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Abstract

A set of basic vectors locally describing metric properties of an arbitrary 2-dimensional

(2D) surface is used for construction of fundamental algebraic objects having nilpotent

and idempotent properties. It is shown that all possible linear combinations of the objects

when multiplied behave as a set of hypercomples (in particular, quaternion) units; thus

interior structure of the 3D space dimensions pointed by the vector units is exposed.

Geometric representations of elementary surfaces (2D-sells) structuring the dimensions

are studied in detail. Established mathematical link between a vector quaternion triad

treated as a frame in 3D space and elementary 2D-sells prompts to raise an idea of “world

screen” having 1/2 of a space dimension but adequately reflecting kinematical properties

of an ensemble of 3D frames.
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1. INTRODUCTION

Raise of interest to the mathematics of hypercomplex (HP) numbers has been defi-
nitely manifested in the last decade, e.g.1−4. It was provoked not only by a “dissipa-
tion of energy” in aging physical theories of the gone century but rather by growing
understanding of deep, yet not completely revealed, content of the mathematics of-
fering a fruitful field for theoretical thought. One physical domain obviously linked
with HP numbers is quantum theory with associative but often non-commuting
operators that resemble objects from the bi-quaternion (BQ) set5,6 . On the other
hand the set is well known to comfortably represent main relations of theories of
relativity7,8. This pure mathematical relationship of still incompatible quantum
physics and general relativity (gravitation) may one day make a path to reconcile
the theories. Whether (or not) this occur, the detailed study of HP algebras al-
ready now demonstrate its benefit allowing to find many physical correlations in
this remarkably rich mathematical medium9. Here the study of basic elements of
HP-numbers set is continued concerning geometric introduction of quaterniona (Q-)
spinors.

BQ numbers, a subset of HP numbers, may be regarded unique since it comprises
diverse representatives of associative algebras, of “good” ones: real, complex and
quaternion numbers, as well as of “not good” ones, admitting zero divisors: bi-
quaternions, double (split complex) and dual numbers10. In particular one will see

aBiquaternion and quaternion algebras have the same set of units, hence, associated spinors;
so for simplicity further on the objects will be referred to only as Q-units and Q-spinors.
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below that the HP-unit of dual numbers despite the fact that it has zero norm is
the “most fundamental” among all other units, the real one included. But a gen-
uine elementary object lying in the very basement of all units forming the named
above algebras is a set of spinors, or elements of ideals11, that heuristically emerge
as eigenfunctions of imaginary Q-units represented by square matrices12. This way
of introduction of the spinors suffers at least of two disadvantages. First, to hit the
goal one has to use a definite representation of Q-units thus depriving the result
of generality. Second, the character of the Q-spinors as (hidden) basic elements of
the Q-algebra having transparent geometric meaning13 comes to light in solution
of equations for eigenfunctions of an operator, what in fact is an artificial math-
ematical act. It seems logically sustainable to start, vice versa, from elementary
geometric notions and objects arriving in result to composed objects describing
other geometry. This line is pursued in this study; its result is an original model of
nature of 3D-world dimensions.

In Section 2 a geometric basement of the theory, a 2D surface locally described by
a dyad (two unitary and orthogonal vectors), is introduced, and all primitive direct
products of the basic vectors, nilpotent and idempotent objects, are investigated.
Section 3 contains a detailed study of algebraic properties of all possible linear com-
binations of the nilpotent and idempotent objects. It is shown in Section 4 that
the four obtained new objects form a set of vector HP units, in particular the set of
Q-units, what prompts to regard the initial surface, 2D-sell, as a fundamental struc-
tural element of a 3D space dimension. In Section 5 the dyad vectors structuring
the other dimensions of the space are found as functions of the initial 2D-sell ele-
ments, and expressions for respective metric tensors are deduced. An idea of “world
screen” mathematically equivalent to a number of Q-frames (particles) in 3D space
is suggested in Section 6, and samples of simple 2D-sells are considered giving birth
to different Q-frames. Short discussion in Section 7 concludes the study.

2. TENSOR PRODUCTS OF ORTHONORMAL VECTORS ON A SUR-
FACE

Consider a sufficiently smooth 2D space (surface) endowed with a coordinate system
xA = {x1, x2} and having a symmetric metric gAB, with its reciprocal existing gBC :
gABg

BC = δCA (A, B, C ... = 1, 2, δCA is the symbol of Kronecker, summation over
repeated indices is implied). A square line element on the surface is

ds2 = gABdx
AdxB. (1)

In general the metric may be not Euclidian, so the difference between covariant and
contravariant components of geometrical objects on the surface is important. It is
always possible to select a couple of orthonormal vectors aA, bB in a fixed point of
the surface:

gABa
AaB = gABb

AbB = 1, (2)

gABa
AbB = aAbA = 0. (3)
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Now axiomatically introduce tensor (direct) products of the vectors with compo-
nents of mixed covariance, thus obtaining 2× 2-matrices

EA
B ≡ aAgBCb

C = aAbB, (4)

FA
B ≡ bAgBCa

C = bAaB. (5)

The objects (4), (5) are non-symmetric matrices, due to Eq.(3) they are traceless

Tr(EA
B) = EA

A = Tr(FA
B) = FA

A = 0,

and have vanishing determinants

det(EA
B) =

1

2
(δBAδ

D
C − δDA δBC )(aAbB)(aCbD) = 0, det(FA

B) = 0.

Examine multiplication properties of the objects (4) and (5). Altogether one can
form only four products. The first two products are squares of the matrices; the
squares vanish due to Eq.(3)

E2 ≡ EA
BE

B
C ≡ aAbBa

BbC = 0, (6)

F 2 ≡ FA
BF

B
C ≡ bAaBb

BaC = 0, (7)

hence E and F belong to the set of nilpotent matrices (or just nilpotents). The
second two products of the nilpotents (4), (5) are result of their mixed left and right
multiplication

GA
C ≡ EA

BF
B
C ≡ aAbBb

BaC = aAaC , (8)

HA
C ≡ FA

BE
B
C ≡ bAaBa

BbC = bAbC . (9)

The objects (8), (9) are symmetric matrices with also vanishing determinants, but
their traces equal unity due to Eq.(2)

det(GA
B) = det(HA

B ) = 0, T r(GA
B) = GA

A = Tr(HA
B ) = HA

A = 1.

Examine multiplication properties of the objects (8) and (9). Again one can com-
pose only four products. The first two products are the squares

G2 ≡ GA
BG

B
C ≡ aAaBa

BaC = GA
C , (10)

H2 ≡ HA
BH

B
C ≡ bAbBb

BbC = HA
C . (11)

Eqs.(10), (11) state that the square of each matrix is the same matrix; therefore
any natural power P of the matrix returns itself

GP = G;HP = H;

such algebraic objects are called idempotent matrices (or simply idempotents). The
second two products given by mutual left and right multiplication of G and H due
to Eq.(3) vanish

GH ≡ GA
BH

B
C ≡ aAaBb

BbC = 0, HG ≡ HA
BG

B
C ≡ bAbBa

BaC = 0, (12)
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i.e. these matrices are orthogonal.

Thus tensor multiplication of the basic vectors on a 2D surface yields four objects
E, F and G, H ; summarize their algebraic properties. The objects E, F are non-
symmetric, traceless 2× 2-matrices with zero determinants; they have zero squares
(hence, norms) thus belonging to the nilpotent set, and their mutual left and right
multiplication gives birth to a new couple G and H, objects of mixed covariance,
each composed as a tensor product of same basic vector either a or b. The objects
G, H are symmetric 2 × 2-matrices with unit trace and zero determinant; their
squares (hence any natural power) returns themselves thus referring the matrices to
idempotent set, and they are mutually orthogonal since their left and right products
vanish. One notes that the objects E and F possess properties characteristic to
vector unit of the HP numbers subset, dual (hyperbolic) numbers10; among the
four objects they should be considered “more fundamental” ones since they are
used to compose idempotents, not vice versa.

3. SIMPLEST LINEAR COMBINATIONS OF NILPOTENTS AND IDEM-
POTENTS

Simplest linear combinations of the nilpotent couple E, F areb

ĨAB ≡ EA
B + FA

B = aAbB + bAaB, (13)

JAB ≡ EA
B − FA

B = aAbB − bAaB. (14)

As above examine algebraic properties and all possible products of the objects (13),
(14).

The object (13) is a symmetric traceless matrix with the determinant

det(ĨAB ) =
1

2
(δBAδ

D
C − δDA δBC )(aAbB + bAaB)(aCbD + bCaD) = −1.

Due to Eqs.(7), (8) the square of Ĩyields the sum of idempotents

Ĩ2 ≡ ĨAB Ĩ
B
C ≡ (EA

B + FA
B)(EB

C + FB
C) = GA

C +HA
C = aAaC + bAbC , (15)

i.e. Ĩ2 is a symmetric matrix that due to Eq.(2) has the non-zero trace

Tr(Ĩ2) = 2, (16)

and the determinant equal to unity

det(Ĩ2) =
1

2
(δBAδ

D
C − δDA δBC )(aAaB + bAbB)(aCaD + bCbD) = 1. (17)

The square of the matrix (15) returns the initial object

(Ĩ2)2 = (GA
B +HA

B )(GA
C +HA

C ) = aAaC + bAbC = Ĩ2,

bThe tilde over symbol I (and later over K) will be explained below.
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the last property and Eqs.(16), (17) uniquely identifying Ĩ2with the 2D Kronecker
delta

aAaB + bAbB = δAB ≡ 1. (18)

Therefore Eq.(15) written symbolically

Ĩ2 = 1 (19)

means that the object ĨAB can be thought of, apart from δAB, as another type of real
unit in the 2× 2- matrix set. The object (14) is a skew-symmetric traceless matrix
with the determinant

det(JAB ) =
1

2
(δBAδ

D
C − δDA δBC )(aAbB − bAaB)(aCbD − bCaD) = 1.

The square of the object J yields the negative sum of idempotents

J2 ≡ JABJ
B
C = (EA

B − FA
B )(EB

C − FB
C ) = −(GA

C +HA
C ) = −(aAaC + bAbC) = −δAC ,

or symbolically

J2 = −1. (20)

Eq.(20) means that J is, apart from iδAB, a type of imaginary unit in the 2×2-matrix
set.

Now find that product of J and Ĩ yields difference of idempotents

K̃ ≡ K̃A
C ≡ J · Ĩ = JAB Ĩ

B
C = (aAbB−bAaB)(aBbC+bBaC) = GA

C−HA
C = aAaC−bAbC .

(21)

The object (21) is a symmetric traceless matrix with the determinant

det(K̃A
C ) =

1

2
(δBAδ

D
C − δDA δBC )(aAaB − bAbB)(aCaD − bCbD) = −1; (22)

its square is

K̃2 ≡ K̃A
BK̃

B
C = (GA

B −HA
B )(GB

C −HB
C ) = GA

C +HA
C = aAaC + bAbC = δAC ,

or

K̃2 = 1. (23)

The properties (22), (23) of the object K̃ are similar to those of the object Ĩ,
this means that K̃ represents another type of real unit. The transposition of the
multipliers of Eq.(21) gives negative expression for the same object K̃

Ĩ · J = ĨABJ
B
C = (aAbB + bAaB)(aBbC − bBaC) = −(aAaC − bAbC) = −K̃A

C ≡ −K̃,

the set of simplest linear combinations is complete.
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4. HYPERCOMPEX UNITS AND STRUCTURE OF SPACE DIMENSIONS

So the four linear combinations are unit-like objects in the set of 2 × 2-matrices.
The sum of nilpotents (13) gives a type of real unit Ĩ, the difference of nilpotents
(14) gives an imaginary unit J , the difference of idempotents (21) again gives a type
of real unit K̃; squares of these unit-like objects are expressed through the real unit
1 given by the sum of idempotents (18). It is easily verified that products of 1 and
any of the other unit-like objects return this object, e.g.

K̃A
B(aBaD + bBbD) = (aAaB − bAbB)(aBaD + bBbD) = aAaD − bAbD = K̃A

D,

or symbolically K̃ ·1 = K̃. But multiplication of the unit-like objects yields diversity
of results dependent not only on names (hence, structure) of the units but too on
their order, e.g. as in Eq.(21) or

J · K̃ = JAB K̃
B
C = (aAbB − bAaB)(aBaC − bBbC) = −(aAaC + bAbC) = −ĨAC ≡ −Ĩ ,

K̃ · J = K̃A
B J

B
C = (aAaB − bAbB)(aBbC − bBaC) = aAbC + bAaC = ĨAC ≡ Ĩ .

The complete multiplication table for all four 2D-vector-born units isc

1 Ĩ J K̃

Ĩ 1 -K̃ -J

J K̃ -1 -Ĩ

K̃ J Ĩ 1

. (24)

This means that the objects (1; Ĩ , J, K̃) behave as a set of some hypercomplex units,
and the table (23) may be regarded as a basis of a hypercomplex algebra; but even
with only real coefficients at the units this algebra would comprise zero-divisors,
e.g.

S ≡ 1 + Ĩ , |S|2 = S · S∗ ≡ (1 + Ĩ)(1− Ĩ) = 0;

P ≡ Ĩ + J, P 2 ≡ P · P = (Ĩ + J)(Ĩ + J) = 0,

the number S belonging to the set of split-complex (double) numbers, the number
P being a dual number10.

However one easily changes the “non-satisfactory” set of units (1; Ĩ , J, K̃) so that
it becomes the basis of “good” quaternion algebra. In fact only the objects with the
tilde Ĩ, K̃ are to be converted from real-like units into imaginary ones (in the set of
2× 2-matrices) what is done with the help of the scalar imaginary unit i. Then the
linear combinations of products of orthonormal vectors belonging to a 2D-surface
give a set of quaternion units

1 ≡ δAB = aAaB + bAbB, (25a)

cThe units are multiplied in the order “row by column” with the products at the respective
intersections.
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I ≡ IAB = −i(aAbB + bAaB), (25b)

J ≡ JAB = aAbB − bAaB, (25c)

K ≡ KA
B = i (aAaB − bAbB), (25d)

original Hamilton’s notations (with no tildes) used. The units (25) form the stan-
dard quaternion multiplication table

1 I J K
I -1 K -J
J -K -1 I
K J -I -1

. (26)

Transition to 3D vector notation (I, J, K) → (q1, q2,q3) = qk, k, n, l... = 1, 2, 3
shrinks the table (26) to the familiar compact form

1 · qk = qk · 1 ≡ qk, qkqn = −δkn + εknjqj, (27)

δkn , εknj being 3D Kronecker and Levi-Civita symbols, summation rule still valid.
Geometrically the units qk behave as three vectors initiating a Cartesian Q-frame in
3D space, each unit determining one dimension. So Eqs.(25) reveal the non-obvious
fact that each dimension of the 3D space (physical space not excluded) may be
thought of having some “fine structure”, the structural elements reflecting geometric
properties of some two-dimensional space (surface). This means that there is a
clear functional interdependence between geometry of a surface and behavior of
respective frame; therefore each particular frame (with an observer implied in its
origin) immanently has its “elementary image” represented by a couple of vectors
forming a 2D surface domain, a “2D-sell”.

5. THE METRICS OF 2D-SELLS ASSOCIATED WITH THE Q-UNITS

The above study offers solution of “direct problem”, of building a Q-frame from
basic 2D vectors. Procedure of the “inverse problem” solution, of describing the
2D-sell on the base of properties of a given Q-frame, is prompted by Eqs.(25). Select
e.g. Eq.(25c) with the identification q3 ≡ KA

B , and notice that this matrix has two
eigenvectors aB, bB and respective covectors aA, bA with eigenvalues ±i

KA
Ba

B = i aB, KA
BaA = i aB; KA

Bb
B = −i bB, KA

BbA = −i bB. (28)

If the eigenfunctions are known, then according to Eqs.(24, 25) all other Q-units,
the scalar one included, are straightforwardly constructed. This moves out the
eigenfunction problem for given Q-vector triad, and makes it interesting to express
eigenvectors belonging to other two Q-units (25a) and (25b) through vector and
covector solutions of Eqs.(28). The procedure of finding the expressions is straight-
forward. Each eigenvector is assumed to be a linear combinations of the vectors
aB, bB, the coefficients of the combination determined from respective eigenfunction
equation; in fact the solutions for the functions are found up to an arbitrary factor.
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A solution for eigenfunctions of the operator q1 ≡ IAB is (with the free factor chosen
a constant)

for +i : cA ≡ i√
2

(aA − bA), cA ≡ −
i√
2

(aA − bA), (29a)

for −i : dA ≡ 1√
2

(aA + bA), dA ≡
1√
2

(aA + bA); (29b)

a solution for the operator q2 ≡ JAB is

for +i : eA ≡ 1√
2

(aA + ibA), eA ≡
1√
2

(aA − ibA), (29c)

for −i : fA ≡ − 1√
2

(aA − ibA), fA ≡ −
1√
2

(aA + ibA). (29d)

Standard compositions of the type (25) of these eigenfunctions give the same set
(26) of the Q-units but “from the viewpoint” of the unit I or the unit J, e.g.

I ≡ IAC = i (cAcB − dAdB), J ≡ JAC = i (eAeB − fAfB).

Analysis of the quaternion multiplication table (26), (27) shows12 that the vector
Q-units’ eigenfunctions aB, bB and those given by Eqs.(29) has spinor properties
since the multiplication table (26) [or (27)] remains invariant under transformations
of the eigenfunctions by 2× 2-matrices from special linear group SL(2, C).

According to results of the Section 4 each Q-unit should have an associated 2D-
sell with a metric constructed from the Q-unit’s eigenfunctions. Find expression
for all these metrics in the terms of the eigenfunctions and also in terms of the
initially chosen spinors aA, bA. First, find expression for metric g(3)AB of the 2D-
sell associated with q3 through its eigenfunctions aA, bA; the sought for expression
immediately follows from Eqs. (18) or (25a)

g(3)AB = aAaB + bAbB, (30)

the orthonormality conditions (2) and (3) evidently fulfilled. The formula for met-
ric g(1)AB associated with q1 is given by analogous combination of the covector-
eigenfunctions cA, dB and with the help of Eqs. (29a), (29b) is expressed through
aA, bA

g(1)AB = cAcB + dAdB = aAbB + aBbA. (31)

One immediately notices that Eq.(31) is equivalent to Eq.(13) with its upper index
lowered by metric (30), i.e. the metric of the 2D-sell belonging to unit Q-vector q1

in terms of basic elements aA, bA belonging to q3 is perceived as the vector real unit
ĨAB with all lower indices.

The metric associated with q2 is found through its eigenfunctions, and with the
help of Eqs.(29c), (29d) through those belonging to q3, as
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g(2)AB = eAeB + fAfB = aAaB − bBbA, (32)

i.e. in terms of aA, bA this metric is perceived as vector real unit K̃AB with all lower
indices.

Eqs.(31), (32) to some extent reveal the geometric sense of the real vector units
Ĩ, K̃ emerging in Eqs.(13), (21) as simple linear combinations of nilpotents and
idempotents. If Kronecker delta (18) is a “natural” metric of a 2D-sell (the metric of
the surface structuring a certain, say basic, space dimension) then the units ĨandK̃
are similar metrics of two other space dimensions but regarded from viewpoint of
the basic dimensions.

6. “WORLD SCREEN TECHNOLOGY” AND EXAMPLES OF Q-FRAMES
BORN BY GIVEN 2D-SELLS

A quaternion triad is known to be naturally associated with a frame of reference8

providing exhaustive explanation of motion of an arbitrary particle. But as is shown
above such a frame has its “more elementary” image, a 2D-sell formed by a couple
of 2D eigenvectors belonging to any of three unit Q-vectors. Therefore character-
istics of the particle motion are reflected by mathematical properties of the 2D-sell
description. Let motion law of a certain number of particles be known; then the
chosen space domain with the particles in it can be adequately represented by a
regular set of respective 2D-sells each sell describing behavior of one particle. A
collection of all such sells form a kind of screen containing full kinematical infor-
mation of the domain of 3D world. Eqs.(29-32) state that there are at least three
options to construct the “world screen” using different sets of eigenfunctions (how-
ever all linearly dependent). Detailed analysis of the 2D-sells reflecting properties
of characteristic 3D motions is to appear in following publications.

Now stress that, vice versa, an arbitrary 2D surface (its sufficiently limited domain)
as well should generate a Q-frame. Some illustrative examples of Q-frames born by
“ordinary” geometric surfaces are given below.

Plane. This trivial example details the procedure of constructing Q-frames from
2D-sells. The Cartesian metric of a plane assumed structuring the dimension q3 is
the Kronecker delta g(3)AB = δA1δB1 + δA2δB2, g

AB
(3) = δA1 δ

B
1 + δA2 δ

B
2 , in this case the

basic vectors forming the 2D-sell are constant rows and columns (plane spinors)

aA = δA2 =
(

0 1
)
, bA = δA1 =

(
1 0

)
; aA = δA2 =

(
0
1

)
, bA = δA1 =

(
1
0

)
.

Using Eqs.(25) build the vector Q-units
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q3̃ = i (aAaB − bAbB) = −i
(

1 0
0 −1

)
,

q1̃ = −i(aAbB + bAaB) = −i
(

0 1
1 0

)
,

q2̃ = aAbB − bAaB = −i
(

0 −i
i 0

)
, (33)

having here the canonical form (the Pauli matrices with –i factor). The set (33) of
constant Q-units describes an inertial frame.

Cylinder. The metric (again associated with q3) has the form

g(3)AB = δA1δB1 + e2ηδA2δB2, g
AB
(3) = δA1 δ

B
1 + e−2ηδA2 δ

B
2 ,

non-zero (and unit-free) radius of the cylinder for convenience is written as r ≡ eη,
η being a real constant. The basic covectors and vectors of the cylinder

aA = eηδA2, bA = δA1; a
A = e−ηδA2 , b

A = δA1

when substituted to Eqs (25) yield the vector Q-units

q3 = −i
(

1 0
0 −1

)
,q1 = −i

(
0 eη

e−η 0

)
,q2 = −i

(
0 −ieη
ie−η 0

)
. (34)

The units (34) are well known to emerge as a result of the simple hyperbolic rotation
qk = Hkñqñ with

Hkñ =

 cosh η −i sinh η 0
i sinh η cosh η 0

0 0 1

 , (35)

qk̃ given by Eqs.(33). Quaternion version of relativity theory8 states that the units
(34) describe a frame moving with constant velocityd V = tanh η in the positive
sense of the direction q2 and being observed from the immobile frame qk̃; the time
coordinate in this case changes along imaginary direction iq1 = Ĩ. It is evident
that a cylindrical surface with changing radius corresponds to a relativistic frame
having rectilinear trajectory but variable velocity modulus.

Sphere. The spherical metric (its reciprocal) is a clear composition of the covectors
(vectors)

aA = r sinϑ δA2, bA = r δA1; aA =
1

r sin θ
δA2 , b

A =
1

r
δA1

dFundamental velocity is chosen a unity.
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that due to Eqs.(25) give birth to the vector Q-units

q3 = −i
(

1 0
0 −1

)
,q1 = −i

(
0 sin θ

sin−1 θ 0

)
,q2 = −i

(
0 −i sin θ

i sin−1 θ 0

)
(36)

having in this case a singularity at the polar point. To avoid infinities consider a

domain close to the sphere’s equator θ =
π

2
− σ, σ � 1, so that sin θ = cosσ ∼=

1− σ2

2
; then one obtains a development of e.g. vector iq1 of Eqs.(36)

q1
∼= q1̃ − i

σ2

2
q2̃

describing hyperbolic rotation of the frame (36) similar to that given by Eq.(35) but

with small hyperbolic parameter η =
σ2

2
� 1. Thus the spherical ring corresponds

to a frame as in the previous case moving along q2 relatively to qk̃ but with variable

velocity V = tanh η ∼=
σ2

2
. Other characteristic examples will be given elsewhere.

7. DISCUSSION

A somewhat prolonged and dull study undertaken in the first sections of this pa-
per of nilpotent and idempotent objects emerging upon 2D surface geometry has
nonetheless an exciting issue. A set of strict mathematical correlations is obtained
linking geometry of 2D surface domains with functional dependence of 3D hyper-
complex units. Existence of these math links, on the one hand, may correspond
to presence of real space (and time) dimensions’ interior structure not detected in
macroscopic experiments. And since the basic vectors forming elementary 2D sur-
faces behave like spinors this aspect of the study may lead to better understanding of
essence of the quantum theory. On the other hand, the found correlations definitely
open opportunity to replace description of quaternion triads successfully treated in
physics as movable rigid frames of reference by description of respective 2D-sells
geometry. Moreover it turns out that any Q-frame, having a sense of an “oriented
particle” (body of reference), can be adequately represented by at least three dif-
ferent 2D-sells each associated with a chosen space dimension. This prompts to
suggest an idea of mapping domains of 3D space comprising a number of particles
(Q-frames) onto a sufficiently wide “world screen” consisting of respective num-
ber of 2D-sells, each sell represented by a somehow limited local “spinor-screen”.
Few given examples show that the idea of the “screen” is in principle realizable
although a good deal of profound study remains yet undone, so there is a space for
explorations aiming to make this alluring technology work and as well be useful.
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